INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

B.MATH - Second Year, First Semester, 2005-06

Statistics - I, Semesteral Examination, 22 November 2005

Calculator and Statistical Tables may be used Marks are shown to the left of each question

(5) 1. Suppose $T \sim \text{Exp}(\lambda)$ with density

$$f_T(t) = \begin{cases} \lambda \exp(-\lambda t), & \text{if } t > 0; \\ 0 & \text{otherwise.} \end{cases}$$

Define a random variable X by

$$X = k$$
 if $k - 1 < T < k$ for $k = 1, 2, ...$

What is a method of moments estimator of λ based on a random sample X_1, \ldots, X_n ?

(5) 2. Let Z_1, Z_2, \ldots, Z_p be i.i.d N(0,1) for p > 2 and $0 < \rho < 1$ be a constant. Define

$$X_1 = Z_1$$
, $X_2 = \sqrt{1 - \rho^2} Z_2 + \rho X_1$, $X_{i+1} = \sqrt{1 - \rho^2} Z_{i+1} + \rho X_i$, $i = 2, \dots, p-1$.

Find the joint distribution of X_1, \ldots, X_p .

(8) 3. Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Define

$$Y_1 = \frac{1}{6} \sum_{i=1}^{6} X_i, Y_2 = \frac{1}{7} \sum_{i=7}^{13} X_i, S_1 = \sum_{i=1}^{6} (X_i - Y_1)^2, S_2 = \sum_{i=7}^{13} (X_i - Y_2)^2, \text{ and } T = S_1/S_2.$$

- (a) Find P(5/6 < T < 5).
- (b) Find $P(5S_2 < 6S_1)$.
- (8) 4. Let X_1, \ldots, X_9 be a random sample from $N(\mu, 1)$. It is of interest to test $H_0: \mu = 0$ against $H_1: \mu > 0$. Consider the test which rejects H_0 if $3\overline{X} > 2.326$.
- (a) What is α , the level of significance of this test? What is the P(Type I Error) for this test?
- (b) What is the power of the test at $\mu = 1.425$?
- (6) 5. Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, where σ^2 is known. Let $0 < \alpha < 1$.
- (a) What is a $100(1-\alpha)\%$ confidence interval for μ ?
- (b) Show that testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ at the α level of significance is the same as constructing a $100(1-\alpha)\%$ confidence interval for μ and then checking whether μ_0 is inside this interval.
- (10) 6. X is said to have the lognormal distribution with parameters μ and σ^2 if $Y = \log(X) \sim N(\mu, \sigma^2)$. (Here log is the natural logarithm.) The notation $X \sim \text{Lognormal}(\mu, \sigma^2)$ is used here.
- (a) Find the density f_X .
- (b) How does one use the rejection method to generate a Lognormal(μ, σ^2) random variate using U(0, 1) random variates, when μ and σ^2 are specified?
- (8) 7. Consider the linear model $y_i = \beta x_i + \epsilon_i$, i = 1, ..., n for the data $(x_1, y_1), ..., (x_n, y_n)$. Suppose the ϵ_i have mean 0, variance $\sigma^2 > 0$, and they are uncorrelated.
- (a) Find the least squares estimate for β .
- (b) Find the expectation and mean square error of the estimate in (a) above assuming that the linear model is true.